QS3D DIGITAL PCR SYSTEM FOR MICROBIAL SOURCE TRACKING

Dongmei Alvi, Seth Frantz, Curt Eskridge, Joan Wirt, Adil Godrej

Occoquan Watershed Monitoring Laboratory The Charles Edward Via, Jr. Department of Civil and Environmental Engineering Virginia Tech

Occoquan Laboratory

- Located at Washington DC capital region
- Virginia Chapter 46
 Accreditation: Commercial Environmental Laboratory

Presentation Overview

• Introduce microbial source tracking (MST)

• Digital PCR (dPCR)

• Quality control and method optimization

• Monitoring results

Background

- Series of testing to differentiate sources (such as human, domestic animals, or wildlife) of fecal coliforms in waterbody
- Based on assumption that fecal bacteria from a particular host poses its unique characteristics
- Target genes can be "fingerprinted" or tied to a particular type of mammal, human or bird
- Support bacteria TMDL development and implementation
- Identify sources and implement target controls

Source: Pathogen Workshop Series Fact Sheet #4. http://www.cws.msu.edu

l ibrary d	enendent	Library in	dependent	Ĭ / ¥
Molecular (genotypic) Rep-PCR • REP primer pair • Box A1R primer Ribotyping • HindIII restriction enzyme • EcoR1 and PvulI restriction enzymes	Biochemical (phenotypic) ARA and MAR CUP and NUP Cell wall fatty acid methylester (FAME) F-specific coliphage typing	Molecular or biochemical (genotypic or phenotypic) Bacteriophage F+RNA	Molecular (genotypic) Host-specific bacterial PCR Host-specific viral PCR Host-specific quantitative PCR Host-specific digital PCR	
	Cultural dependen	t	Cultural independent	X V

Case Studies

- Virginia DEQ began using MST to identify fecal bacteria sources in the 1990s and has since implemented a statewide MST program to support TMDL development
- Page Brook Watershed: average of 94% fecal coliform reduction (cattle) from pre-fencing to post-fencing (Hagedorn et al. 1999)

Source: Using Microbial Source Tracking to Support TMDL Development and $oldsymbol{ au}$ Implementation (2011)

Tillamook Bay (2001)

Sand Dam Village Pond Town Beach, New Hampshire (2005) Middle Rio Grande (MRG), New Mexico (2002)

Hays Creek, Virginia (2005)

X

Standardized Methods

- Method 1696: Characterization of Human Fecal Pollution in Water by HF183/BacR287 TaqMan® Quantitative Polymerase Chain Reaction (qPCR) Assay. March 2019
- Method 1697: Characterization of Human Fecal Pollution in Water by HumM2 TaqMan® Quantitative Polymerase Chain Reaction (qPCR) Assay® March 2019
- Method B: Bacteroidales in Water by TaqMan® Quantitative Polymerase Chain Reaction (qPCR) Assay. June 2010
- Draft Method C: Escherichia coli qPCR method

Digital PCR Basics

- absolute quantification
- partition of target genes
- Poisson distribution

Comparison with conventional-PCR

	Digital PCR	Real-time PCR	Traditional PCR
Overview	Measures the fraction of negative replicates to determine absolute copies.	Measures PCR amplification as it occurs.	Measures the amount of accumulated PCR product at the end of the PCR cycles.
Quantitative?	Yes, the fraction of negative PCR reactions is fit to a Poisson statistical algorithm.	Yes, because data is collected during the exponential growth (log) phase of PCR when the quantity of the PCR product is directly proportional to the amount of template nucleic acid.	No, though comparing the intensity of the amplified band on a gel to standards of a known concentration can give you 'semi- quantitative' results.

Source: https://www.thermofisher.com/us/en/home/life-science/pcr/real-time-pcr/real-time-pcr-learning-center/real-time-pcr-basics/real-time-vs-digital-vs-traditional-pcr.html

Source: Phenix-Lan Quan, Martin Sauzade, and Eric Brouzes. dPCR: A Technology Review. Sensors 2018, 18, 1271

Advantages of dPCR

- no known standards needed
- increases the ratio of the target of interest versus the background
- binomial probability well translated by using Poisson distribution
- improved sensitivity and reproducibility
- enhanced inhibitor resistance
- ease of use

Workflow of QS3D dPCR

56

Primer sets

Target	Assays	Sequence	Annealing Temperature (°C)	***
Human-associated Bacteroides 16S rRNA	BacH	Forward Primer: 5'CTTGGCCAGCCTTCTGAAAG3' Reverse Primer 5' to 3': 5'CCCCATCGTCTACCGAAAATAC3' Probe: 5'TCATGATCCCATCCTG3'	two step 45 and 50	
Ruminant: cows, buffalo, sheep, deer, goat, elk	BacR	Forward primer: GCGTATCCAACCTTCCCG Reverse Primer 5' to 3': CATCCCCATCCGTTACCG Probe: CTTCCGAAAGGGAGATT	two step 45 and 50	

X

Sample Processing Control (SPC): Sketa22

Laboratory blank and non-template control

Sensitivity: detect single gene copy, relative percentage difference (RPD) < 10%

• Four replicates of diluted positive control at <10 copies/μL
 • Standard deviation < 1.0 copies/μL
 • Relative percent difference (RPD) <10%

Spike Raw Sewage

Inhibition Resistance

Dilutions	Chip reading, copies/uL	Scale up, copies/uL	Average	R, %
3X	2019	6057	6307	96
5X	1383	6915		110
10X	595	5950		94
10X	595	5950		94

Monitoring Data

Date	HumanSource	RuminantSource	E.coli	Date	HumanSource	RuminantSource	E.coli	
	copies/100mL	copies/100mL	mpn/100mL		copies/100mL	copies/100mL	mpn/100mL	
7/11/2018	39.9	69.7	4.1	7/10/2019	186	244	579	NI VE
8/1/2018	2537	6287	6130	7/24/2019	108	72	122	
8/15/2018	86.9	72.4	42.2	8/7/2019	24	29	816	
8/29/2018	63	75	19.7	8/21/2019	42	70	272	
9/5/2018	92	29	59.1	9/4/2019	141	146	10.7	M IN
10/2/2018	272	197	122	9/18/2019	41	36	8.5	
10/17/2018	275	152	122	10/2/2019	199	170	3.1	
10/1//2018	520	100	25.1	10/16/2019	337	290	14.2	
10/31/2018	98	138	29.2	10/30/2019	183	154	38.4	NI VE
11/7/2018	74	561	4610	11/5/2019	119	184	114	N.
11/27/2018	522	859	921	11/20/2019	153	142	19.3	77
12/5/2018	638	1083	79.4	12/4/2019	313	722	12.2	
1/2/2019	1239	27977	548	12/17/2019	234	14200	308	
1/16/2019	592	802	4.1	1/2/2020	1881	3380	50.4	
1/29/2019	661	895	45.7	2/5/2020	146	209	7.3	
2/6/2019	524	884	6.3	2/20/2020	189	199	8.5	
3/6/2019	128	2350	9.8	3/4/2020	113	174	3.1	
3/20/2019	110	110	9.7	3/16/2020	78	69	8.6	
4/3/2019	93	147	5.2	4/29/2020	198	178	48.8	A X
5/1/2010	01	100	24.2	5/6/2020	339	226	63.1	
5/1/2019	21	120	21.5	5/20/2020	160	150	5.2	
5/30/2019	30	61	31.3	6/3/2020	215	307	6.3	11 1
6/5/2019	100	55	18.7	6/17/2020	124	197	24.6	
6/19/2019	51	40	25.9				N/A	1

*

K

F

2018-19 Trend of Human/Ruminant Source, and E.coli by Colilert

2019-20 Trend of Human/Ruminant Source, and E.coli by Colilert

Conclusions

- Assay optimization is key
- Design experiment with consideration of all necessary quality control components
- Assess assay specificity
- Normalize biomarker and E. coli data
- dPCR can be a viable tool for microbial risk assessment

PCK timougn med gets PCK timougn med gets <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>त्री के</th><th></th></th<>							त्री के	
Image: Problem in the properties on the inclusion of a thermosphile inclusion of a	PCK through the ages							
1950 1960 1960 1970 1975 1980 1985 1990 1995 2000 2005 2010 1950 1955 1960 1960 1970 1975 1980 1985 1990 1995 2000 2005 2010 1950 1955 1960 1960 1970 1975 1980 1985 1990 1995 2000 2005 2010 1955 1960 1960 1970 1975 1980 1985 1990 1995 2000 2005 2010 1955 1960 1960 1970 1975 1980 1985 1990 1995 2000 2005 2010 1955 1950 1990 1985 1990 1995 2000 2005 100 <th>The discovery of the DNA double helix structure aquaticus</th> <th>erase is isolated stable DNA se named hermophilic cuterium Thermus aquaticus)</th> <th>icroarray technology CPCR D. "Cloning and is described tumor.". <i>Cancer</i> in an article 42(3): 1088–1093. 9971, 1982. http:// aacrjournals.org/ (Saiki <i>et al.</i>) 3/1088.long</th> <th>Science CS Magazine names Taq polymerase its first "Molecule of the Year"</th> <th>Kary Mullis received the Nobel Prize The first real-time PCR instrument is described</th> <th>rst complete ne of a free- organism is nced by Venter Jelagues <i>tophilus</i> <i>tzae)</i> Uynx Therapeur publishes and "MPSS" - a pa adapter/ligatio bead-based se technology, lau generation" se</th> <th>tics 600 The first complete numericalelized, nn-mediated, genome is sequencing sequenced by Levy <i>et. al.</i> quencing</th> <th>Gibson <i>et al.</i> create the first bacterial cell controlled by a chemically synthesized genome (using Phusion High Fidelity DNA Polymerase)</th>	The discovery of the DNA double helix structure aquaticus	erase is isolated stable DNA se named hermophilic cuterium Thermus aquaticus)	icroarray technology CPCR D. "Cloning and is described tumor.". <i>Cancer</i> in an article 42(3): 1088–1093. 9971, 1982. http:// aacrjournals.org/ (Saiki <i>et al.</i>) 3/1088.long	Science CS Magazine names Taq polymerase its first "Molecule of the Year"	Kary Mullis received the Nobel Prize The first real-time PCR instrument is described	rst complete ne of a free- organism is nced by Venter Jelagues <i>tophilus</i> <i>tzae)</i> Uynx Therapeur publishes and "MPSS" - a pa adapter/ligatio bead-based se technology, lau generation" se	tics 600 The first complete numericalelized, nn-mediated, genome is sequencing sequenced by Levy <i>et. al.</i> quencing	Gibson <i>et al.</i> create the first bacterial cell controlled by a chemically synthesized genome (using Phusion High Fidelity DNA Polymerase)
Kleppe and co-workers first describe a method using an enzymatic assay to replicate a short DNA template with primers <i>in vitro</i> Frederik Sanger and colleagues introduce the "dideoxy" chain-termination method for sequencing DNA (also known as "Sanger sequencing'). It utilizes DNA polymerase, nucleotide precursors and one oligonucleotide primer Working for Cetus, Kary Mullis discovers that using two oligonucleotides instead of one - on opposite strands- enables DNA to be synthesized from a single, specific, location in the genome. Technique for PCR was created Patent for Taq DNA polymerase is characterized to the market by Perkin Elmer and Cetus (joint venture) Antibody based et al. Genome of the first eukaryotic organism, Saccharomyces cerevisiae, is sequenced to the market by Perkin Elmer and Cetus (joint venture) Phatent for Taq DNA polymerase is characterized to the market by Perkin Elmer and Cetus (joint venture) Antibody based to the synthesized to the market by Perkin Elmer and Cetus (joint venture) Genome of the first eukaryotic organism, Saccharomyces cerevisiae, is sequenced Phusion High- eukaryotic organism, saccharomyces cerevisiae, is sequenced Phusion High- fielity DNA based to tar to the market by Perkin Elmer and Cetus (joint venture) Antibody based et al. Genome of the first eukaryotic organism, saccharomyces cerevisiae, is sequenced Phusion High- fielity DNA based to tar to the market by Perkin (joint venture) Antibody based to the market by Perkin (joint venture) Genome of the first eukaryotic organism, saccharomyces cerevisiae, is sequenced to the market by Perkin to market Multis et al.	1950 1955 1960 1965 1970 1975	1980	1985	1990	1995	2000	2005	2010
	Kleppe and co-workers first describe a method using an enzymatic assay to replicate a short DNA template with primers <i>in vitro</i>	Frederik Sanger and colleagues introduce the "dideoxy" chain-termination method for sequencing DNA (also known as 'Sanger sequencing'). It utilizes DNA polymerase, nucleotide precursors and one oligonucleotide primer	Working for Cetus, Kary Mullis discovers that using two oligonucleotides instead of one – on opposite strands- enables DNA to be synthesized from a single, specific, location in the genome. Technique for PCR was created	Patent for <i>Taq</i> DNA polymerase is filed by Mullis <i>et al.</i> The first automated PCR cycler is introduced to the market by Perkin Elmer and Cetus	The first high- fidelity DNA polymerase is characterized by Mattila et al. Hot start PCR by wax	Genome of the first eukaryotic organism, <i>Saccharomyces</i> <i>cerevisiae</i> , is sequenced Two commercial real-time PCR instruments are launched to market	Phusion High- Fidelity DNA Polymerase, the first PCR enzyme based on fusion protein technology, is launched by Finnzymes Oy	he MIQE guidelines Minimum Information for ublication of Quantitative eal-Time PCR xperiments) are published y Bustin <i>et. al.</i>

Source: https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecularbiology/molecular-biology-learning-center/molecular-biology-resource-library/spotlightarticles/history-pcr.html

- The

7